## MEASUREMENT OF ABSORBED DOSE-RATE IN SKIN FOR LOW-LEVEL BETA-RAYS

Kunihiko Shinohara, Yoichiro Kishimoto, Yoshihisa Kitahara and Seiji Fukuda

Health and Safety Division, Power Reactor and Nuclear Fuel Development Corporation, Tokai-works, Tokai-mura, Ibaraki-ken, Japan

A new type of beta-ray absorbed dose-rate meter has been manufactured applying the detection method developed by K. Bingo et. al. (1) to evaluate the absorbed dose in skin at a depth of 7 mg/cm² lying above a contaminated sandy beach.

The instrument uses a plastic scintillator with 2.5 mm thick and a single channel pulse height analyzer(SCA) to obtain the best correlation between the instrument response and the absorbed doserate.

The absorbed dose-rates for beach sands were measured by the instrument and were compared with the calculated values by the computer code "BETA-SAND" developed by PNC and JAERI (2). With this instrument the absorbed dose-rate of about 2  $\mu$ rad/hr can be measured by 60 minutes counting.

## METHOD AND RESULTS

The beach sands were sampled at eight points around PNC Tokaiworks and were dried at about  $80\,^{\circ}\text{C}$  by a drying oven. The concentration of potassium-40 in the samples were determined by a Ge(Li) spectrometer. The concentration of K-40 in the samples showed a range from 6.3 to 14.9 pCi/g-dry.

The schematic block diagram of the beta-ray absorbed dose-rate meter used in this experiment is shown in Fig. 1.

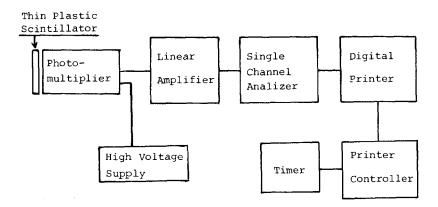



Fig. 1 Schematic Block Diagram of the Beta-ray Absorbed Dose-Rate Meter

The reference beta-ray sources shown in Fig. 2 such as Sr-90/Y-90, Cs-137, Pm-147 and T1-204 were used to determine the discrimination level and the window width of the SCA. The absorbed dose-rates in skin above the sources were determined by the theoretical value calculated by W. G. Cross (3). The conversion factor obtained from the calibration was 0.4  $\mu rad/hr$  per cpm for the maximum beta-ray energy ranging from 0.5 to 2.27 MeV. The beta-ray spectra of Cs-137 and T1-204 measured by the instrument are shown in Fig. 3.

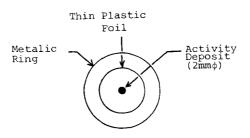



Fig. 2 Reference Beta-ray Source (LMRI made)

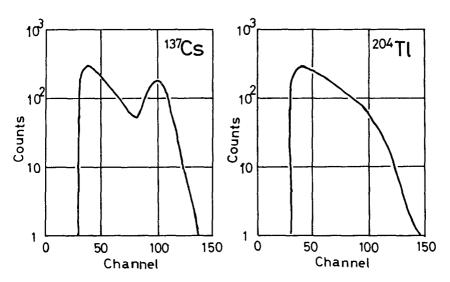



Fig. 3 Beta-ray Spectra of <sup>137</sup>Cs and <sup>204</sup>Tl measured by the Absorbed Dose-rate Meter

The absorbed dose-rates of the samples were measured by following steps;

- (1). Counting the background  $(C_{\rm p})$  for 60 minutes,
- (2). Counting the sample including the background ( $C_{\mathrm{BS}}$ ) for 60 minutes, and
- (3). Calculation of the net counts  $(C_S)$   $C_S = C_{BS} C_B$ and the absorbed dose-rates (D)  $D = (C_c/60) * (conversion factor)$

An experiment was done to know the relation between the absorbed dose-rate and the depth of sands. The sample prepared for the experiment was adsorbed K-40 on the sand particles. As shown in Fig. 4, the result presents that the absorbed dose-rate is independent with the depth of sands when it is greater than 0.4  $g/cm^2$ .

The dominant natural radionuclide contributing to the absorbed dose is considered to be K-40 (4), so that we compared the measured values and the calculated K-40 dose-rates in the sands. The results of this experiment is shown in Fig. 5 and presents a good correlation.

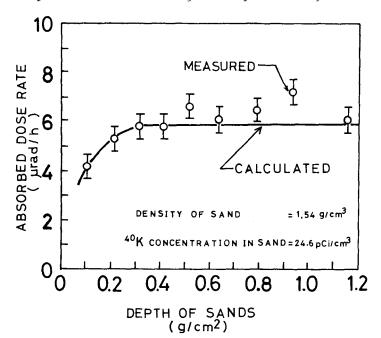



Fig. 4 Change of Absorbed Dose-Rate with Depth of Sands. "CALCULATED" is the Dose Rate by the Beta-ray from Potassium-40 Adsorbed on Particles of Sand.

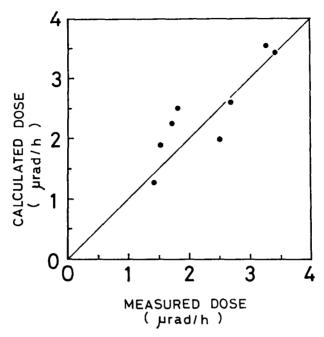



Fig. 5 Correlation between Calculated and Measured Absorbed Dose Rates.

"CALCULATED DOSE" is the Dose Rate only by K-40.

## SUMMARY

- This absorbed dose-rate meter has relatively high stability and sensitivity to measure skin doses.
- (2). The measured absorbed dose-rate and the calculated doserate has shown a good correlation.
- (3). Further study must be made on;
  - the influence of the particle size distribution of sands,
  - the influence of the water content in the sands, and
  - the contribution of the natural radionuclides other than K-40.

## REFERENCES

- (1) Bingo, K., Chida, T. and Kawai, K. (1976): JAER-M-6753
- (2) Itoh, N. et. al. (1977): JAERI-memo-7389
- (3) Cross, W. G. (1967): AECL-2793
- (4) Miyanaga, I. et. al. (1976): JAERI-memo-6842