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By collecting the radon (Rn-222) emanating from a sample enclosed
in an accumulation can, the mean exhalation rate (Bq s-1) can easily be
deduced by extracting gas from the can and analysing it for radon. This
so~called closed~can method has been used in various forms since the
beginning of this century, The radon exhalation rate from a sample free
in air and in equilibrium with its surroundings (i.e. the radon con-
centration gradient inside the porous sample is constant in time) is
referred to as the free exhalation rate of the sample. The natural aim
of most exhalation measurement techniques is to determine this free
exhalation rate, Unfortunately, the radon accumulating variant of the
closed-can technique fails in this (except for samples that are very
thick compared with the diffusion length), and what is really remarkable
is that this failure can pass unnoticed, even under carefully controlled
laboratory conditions. The objective of this paper is to illustrate, by
means of theoretical calculations using diffusion theory and Fick's law,
why it is so difficult to experimentally determine the free exhalation
rate with closed~-can methods. The temporal variation of the radon ex~-
halation rate and the corresponding radon gas concentration in the
sample enclosure (outer volume) for 'one~dimensional' samples will be
presented. The conclusions drawn are, in principle, also valid for more
realistic sample geometries, as long as the dimensions of the sample
relative to the diffusion length are kept the same.
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where D, is the effective diffusion coefficient, p the sample porosity,
Cp the maximum pore concentration in an infinite sample, and A the decay
constant of radon-222. C, is related to the specific radium concentra-
tion, Cgp,, of the sample by the relation pCp= Cpyucp , where €is the
emanation fraction (the fraction of the radon produced in the sample
reaching the pore space), andp the bulk density of the sample. The
initial condition is that Cc(z,t) is zero for all z>d (i.e. in the outer
volume). The boundary conditions for the bottom and the open surface of
the sample for t>0 are given by Eqs (2) and (3), respectively (instan-~
taneous mixing of the air in the outer volume is assumed)

Eq. 2 36(z,t)/32=0 for z=0 (bottom)
Eq. 3 -pDe 3C(z,t)/9%z - h(A+v)c(z,t) = h3c(z,t)/dt for z=d

where vV is the leakage rate constant of the can. Equation 3 is the
mathematical expression for the balance between the exhalation according
to Fick's law (first term) and the loss of activity (second term) due to
decay and leakage. The relative leakage factor, y, is e?ual to (A+u)/x
and the diffusion length, L, is defined as L=(Debx)1 2, Analytical
solutions to Equation 1 for u=l (i.e. no gas leakage out of the can)
have been published (Kr71, Sa84).
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Figure 2. The temporal evolution of
3 a) radon exhalation rate and b) &
c) outer volume concentration after
2 closing a radon-tight can holding
1 samples of different thicknesses d.
All samples have the same total
2] s . radium-226 content (4500 Bq m~2).
8 1 2 L=2m3,€=0.5, h= 30 cm, P = 1.5
[ Time’s E 4 kg dm”3.

In this paper, numerical solutions for C(d,t) (i.e. the outer
volume concentration as a function of time) and the corresponding exha-
lation rate (Bq m~2 s~1) are presented in Figures 2-4, The radium-226
activity of all samples, irrespective of sample thickness, is normalized
to 4500 Bq m~2, The time scale of the exhalation part of the figures is
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logarithmic in order to emphasize the initially rapid change in exhala-
tion rate after closure. The concentration versus time curves are drawn
on linear scales. All samples in figures 2-3 are thin compared with the
diffusion length, L= 2m. Nearly all radon atoms available to the pore
volume of the samples will therefore escape to the outer volume initial-
ly. In other words, all samples will exhibit about the same free exhala-
tion rate. Let us, with this in mind, examine the radon-tight (u=1)
enclosure illustrated in figure 2, As soon as the lid is put on the
increase in radon activity in the outer volume will lead to an increase
in the radon concentration in the outermost pores, thereby decreasing
the exhalation rate., Within a few hours a final exhalation rate is
reached. Thereafter, the increase in radon concentration is uniform
throughout the whole pore volume and outer volume, a state corresponding
to an exhalation rate which is constant in time, The described behaviour
is typical for all samples that are thin in comparison with the effec-
tive diffusion length L.

For d€20 cm the rapid initial change in exhalation rate is well
hidden in the concentration curves even if the time scale is expanded
(Fig. 2c). In the past, experimentalists have judged the initial part of
activity growth as truely linear and corresponding to the free exhala-
tion rate. This is in conflict with the results of the time~dependent
diffusion theory predicting that the mean exhalation rate during the
first few hours is much closer to the final steady-state exhalation rate
than the free exhalation rate.

The influence of leakage is exemplified in Figure 3, The initial
slope of all concentration curves is approximately the same, correspon-
ding roughly to the final steady-state exhalation of the radon-tight can
(p=1). A few hours after closure the exhalation rate starts to increase
again for all leaking cans since the increase in radon concentration in
the outer volume is not fast enough due to radon atoms leaking out. This
unexpected behaviour has been explained in detail elsewhere (Sa87).
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Figure 3, Exhalation and outer volume concentration for the 20 c¢m thick
sample in Fig.2 but in leaking cans, The relative leakage u= (A+v)/A.

The diffusion theory predictions for samples with different dif-
fusion lenghts are displayed in Figure 4., If the thickness of the sample
is much larger than the diffusion length, the free exhalation rate
prevails for a substantial time and thus can be easily measured with the
closed-can technique. The prolonged period of free exhalation is due to
the slow increase in radon concentration in the outer volume. The radon
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Fig. 4. The exhalation and concentration caused by the d= 20 cm sample
in Fig. 2 but with different diffusion lengths L.

concentration in the pore volume has, in this case, enough time initial-
ly to '"follow' the concentration increase in the outer volume. The
conclusion from Figure 4 is that the thicker the sample (relative to the
diffusion length) the more the disturbance of free exhalation is de-
layed, and for very thick samples free exhalation prevails for such a
long time that an experimental determination is feasible.

The results in this paper are based on time-dependent diffusion
theory and the following main assumptions:
1) Fick's law is valid for porous samples.
2) Prior to time t=0 the sample is in equilibrium with a
surrounding radon concentration equal to zero.
3) There is an instantaneous mixing of the gases in the
outer volume,
None of these assumptions is neccessarily true to 100% in the practical
use of the closed-can method. Despite these reservations it should be
stressed that the exhalation school, which identifies the free exhala-
tion rate with the mean exhalation rate during the first few hours after
closure, has no support from the time-dependent diffusion theory, except
for samples which are very thick compared with the diffusion length.
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