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ABSTRACT

Theoretical models and experimental methods are described
for the determination of parameters used in the analysis of
Radon adsorption and diffusion in porous media.

INTRODUCTION

Adsorption on activated charcoal is a phenomenon widely used
for the measurement of Radon concentration in air.! Following
exposure to an unknown atmosphere, the Radon content in a
charcoal canister is derived from the y-emission of its decay
products, at radiocactive equilibrium. Radon concentration in the
alr is then usually inferred by comparing the above mentioned y-
activity to the activity resulting from exposure to a known
Radon concentration.

The Nuclear Instrumentation and Measurements Laboratory of
DCMN is involved in the definition of the Italian standard for
Radon measurement by means of activated charcoal. Among the
goals of this effort is the identification of simple and
accurate procedures for the determination of two fundamental
parameters governing Radon permeation in porous media:
adsorption and diffusion coefficients.

THEORETICAL MODELS AND EXPERIMENTAL MEASUREMENTS

Adsorption coefficient. This coefficient is found by injecting a
gas pulse into a charcoal column open at both ends and analyzing
the temporal evolution of the gas concentration at the outlet.?:3

A mathematical description of the pulse shape through the
porous medium is given by the "theoretical plate model,”
borrowed from the analysis of plate distillation columns, which
treats adsorption as a discrete process. The adsorbing column is
regarded as a series of N chambers of height H where immediate
equilibrium is reached between mobile and stationary phases. The
pulse shape through the filter can be deduced, at any time t,
from a mass balance, setting an initial condition of zero
concentration in all the plates but the first one, where the
input pulse is assumed as uniformly distributed. This yields:

N,AN-1 .N-1
op(t) = a2 2t e~ (N-Q't/km)

(N=1) ! (km) ™
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The gas concentration at the outlet, calculated from this
expression, is:

CN(t) = (E) N_l.e_(N'Q't/k'm)
k-m

The time typy, at which the output concentration is maximum,
and the time interval At,,,, (FWMH), may be easily derived from
experimental eluition curves (Figure 1). The number N of the
theoretical plates may be then deduced from the relation between
Ati,2/tyax and N, reported in Figure 2. The relation between ty,y

and the average retention time, t, is: tyy = t- (N-1) /N.

Finally, the adsorption coefficient K, relative to a column
containing a charcoal mass m and crossed by an air flow Q, may

be calculated from the expression: K = (E-Q/m).
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Figure 1. Eluition curve Figure 2. Atj/p/tpax as

a function of N

Effective diffusion coefficient. In order to measure the
coefficient Dg, a charcoal column with one open end is exposed
to a Radon atmosphere until a uniform concentration Cg is
reached throughout its height, a. A continuous flow of air then
sets at zero the upper free surface concentration, while the y-
emission from Rn daughters is monitored with time. With these
initial and boundary conditions, integration of the set of
differential equations describing the process of combined
eluition and decay
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yields a concentration profile along the column axis which

1
approaches a single sinusoid when t > kflqz.
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4 Cryostat 9 Multichannel analizer
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Figure 3. Test-rig

In this case, the distribution of radiocactive isotopes
inside the charcoal column does not vary with time, therefore,
the geometric efficiency of a y-detector placed near the column
is constant. This allows for the measurement of the decrease of
activity:*?
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The value of the constant 2a , where the diffusion
coefficient De is the only unknown quantity, may be calculated
through exponential interpolation of the experimental data, as
shown in Figure 4.
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0.986
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Figure 4. Temporal evolution of the y-activity of the three most pronounced

peaks of the Radon daughters spectrum.

CONCLUSIONS

At DCMN we can measure all the quantities that characterize

the response of an activated charcoal canister exposed to
constant conditions until equilibrium 1s reached with both
environmental humidity and Radon. Based on these data, we are
developing the analysis of the canister response when conditions
of exposure undergo dynamic transients.
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