IRPA9

1996 International Congress on **Radiation Protection** April 14-19,1996 Vienna, Austria

FORM FOR SUBMISSION OF ABSTRACTS (Instructions for preparation on reverse)

FOR OFFICIAL USE ONLY	
Abstract No.	
Receipt	
Author	
Acceptance	
Mini-Presentation	

PAPER TITLE	HOW TO ASTABLE 3		
	ABDALLA A. MB.B.CH.; M (UNIT OF MED.RADIOGENE Department of Radiation Pro	TICS AND	R.Ph.D. RADIODIAGNOSIS.)
SUBMITTING AL	*	,00001011	
LAST NAME	SHAABAN FIRST NAI	ME Ab	dalla ^{mue} Dr.A
AFFILIATION	NUCLEAR RESEARCH CENTER, EGYPT.	TEL	698010-698414
STREET	101 Kasr-elaini st. Cairo.	FAX	698899
CODE	00202 _{CITY} Anshas : Cairo	COUNTRY	EGYPT.

MAJOR SCIENTIFIC TOPIC NUMBER 3 -. 4 . . . (see page 7)

ABSTRACT (See instructions overleaf)

PRESENTING AUTHOR (IF DIFFERENT)

Chromosomal aberration in human T-Lymphocyte of peripheral blood are sensitive indicators of radiation exposures even at low levels of dose. At present, chromosome analysis is the method of choice for a biological estimation of an equivalent whole-body dose of actual or suspected over-exposures to ionising radiation.

Cytogenetic dosimetry is a valuable tool in supplementing physical dosimetry in practical radiation protection since, individual; body doses down to 100 mSv. gamma-rays can be reliably detected. There are some limitations for a quantification of individual acute exposures below 50 mGy; for partial-body, chronic exposures and in particular for incidents with incorparation of radionuclides with selective depositions.

Four biodosimetric methods are used for the evaluation of the radiation dose, viz: glycophorin-A (GPA)-somatic mutations; chromosome translocations; micronulei; and dicentrics. Two of these biodosimeters; (GPA) and translocations are stable with time post-exposure and are therefore expected to integrate radiation damage under chronic exposure conditions. The other two (micronuclei and dicentrics); are unstable, and can only detect recent exposures.

Two different approaches were used to detect chromosome translocations in peripheral blood lymphocytes -viz: fluorescence in situ hybridization (FISH) and G-banding.