International Radiation Protection Association EYE DOSE GUIDANCE (and EPRI Workshop) -- SPRING 2016 --

Stephen Balter, Ph.D.

Professor of Clinical Radiology (Physics) (in Medicine)

FOR THE IRPA WORKING GROUP

HPS – NCRP Workshop, New York, August 2016

SB1608 – IRPA/EYE - 1

2015 IRPA survey of professionals on the new dose limit to the lens of the eye and wider issues associated with tissue reactions

Cape Town, South Africa

Marie Claire Cantone, Merce Ginjaume, Saveta Miljanic , Colin J Martin, Keiichi Akahane, Louisa Mpete, Severino C Michelin, Cynthia M Flannery, Lawrence T Dauer, Stephen Balter

Topic 1 Implications for Dosimetry

Q1 - Q8 - implications for monitoring and assessing dose to the lens of the eye and the interpretation of the results.

Topic 2 Implications for Methods of Protection

Q9 - Q12 - implications for methods (e.g., procedures or the design phase of equipment, facilities, and protective equipment) used to reduce dose to the eye, in the context of optimization of protection.

Topic 3 Wider Implications of Implementing the Revised Limit

Q13 – Q18 - long term impact on working activities; - changes in Health surveillance; - more claims for compensation

Topic 4 Legislative and other general aspects

Q19 - Q22 - guidelines addressing monitoring related to new limit; -consultation for legislation; -wider issue of tissue reactions, also circulatory disease

Conclusions from the survey Direct implication in dosimetry and protection

ASs devoted most attention to the medical area, non uniform exposure (interventional radiology and cardiology) A dosimeter measuring Hp(3) close to the eye is
 considered the ideal method and used in pilot studies; Because of the limited availability of Hp(3) dosimeters,
 Hp(0.07) and Hp(10) are predominantly used;

IRPA

When use a dosimeter close to the eye → it should
 be on a head band¹, suggestions on the position: the side of the head, the eyebrow ridge, on the forehead, or attached into the protective glasses;

¹ Not seen as practical by medical HPs attending the IRPA eye presentation.

Conclusions from the survey Direct implication in dosimetry and protection

The dosimeter is worn at the collar outside the lead apron, but no correction factor is applied;

IRPA

- Protective systems are not always available and used at different levels, hospital to hospital, even within the same country;
- In nuclear installations, shielding masks, glove-boxes and remote systems were in use before the introduction of the new dose limit, and no major changes are foreseen

Regardless of the area of use, issues emerge, beside the economic ones, about the discomfort associated with using lead glasses, since they are heavy and not being suitably fitted for individuals.

Related Activities

Radiation Induced Cataracts: Science, Policy, and Impacts Radiation Protection Workshop Wednesday, 1 June 2015

EPRI Update: Lens of the Eye Projects

al Atomic Energy Agency TECDOC No. 1731

Implications for Occupational Radiation Protection of the New Dose Limit for the Lens of the Eye

www.irpa.net

SB1608 – IRPA/EYE - 7

IRPA Guidance is based on 20 mSv/y

ICRP recommendation is 20 mSv/y
NCRP may be 50 mSv/y

Dauer: EPRI 2016

Dauer: EPRI 2016

SB1608 – IRPA/EYE - 8

IRPA

Guideline protocol for eye protection and eye dose monitoring of workers

IRPA guideline protocol for eye protection and eve dose monitoring of workers

INTRODUCTION

In April 2011, the International Commission on Radiological Protection revised its eye dose threshold for cataract induction. The Commission specified a limit of 0.5 Gv. compared with the previous threshold doses for visual-impairing cataracts of 5 Gy for acute exposures and > 8Gy for highly fractionated ones. Further, ICRP recommended a reduction in the dose limit for occupational exposure in planned exposure situations (in terms of equivalent dose) for the lens of the eye from 150 mSv to 20 mSv in a year, averaged over defined periods of 5 years, with no dose in a single year to exceed 50 mSv⁽¹⁾. This revised dose limit is incorporated into IAEA International Basic Safety Standards (2), and into the Council Directive Euratom (3) which must be implemented by the Member States by February 2018.

The reduction of the limit for occupational exposure for the lens of the eye has significant implication in view of the application to planned exposure situations for the different areas of occupational exposure (4.5) and needs adequate approaches for eye protection and eye dose monitoring.

IRPA initiated a process in 2012 to survey the views of the Associate Societies worldwide and to provide a medium for discussion on the implications of implementation of the new limits for the lens of the eve in occupational exposure (6-9).

Within the IRPA key scope of supporting the RP professionals; the purpose of this guideline is to provide practical recommendations about when and how eye lens dose should be monitored in the framework of the implementation of the new ICRP dose limit for the lens of the eye, as well as guidance on use of protective devices depending on the exposure levels.

WORKERS FOR WHOM LENS OF THE EYES MONITORING MIGHT BE NEEDED

Risk assessments should be carried out to identify workers for whom exposure of the lens of the eyes might be important. These will require the use of information available on the tasks undertaken and the level of involvement in the procedures.

1. Workers exposed to a relatively uniform whole-body radiation field, shall not need any specific eye lens monitoring. The whole body dosimeter will provide a good estimate of the eye-lens dose. This is the most frequent situation, and thus in most cases no special monitoring or procedures shall be required.

A guideline protocol has been drafted, to provide practical recommendations about when and how eye lens dose should **be monitored** in the framework of the implementation of the new dose limit for the lens of the eye, as well as guidance on use of protective devices depending on the exposure levels.

Guideline protocol for eye protection and eye dose monitoring of workers

- Workers for whom lens of the eyes monitoring might be needed
- Proposed dose levels for implementation of dose monitoring
- Eye lens monitoring procedures
- Guidance on use of eye protective devices

Guideline protocol for eye protection and eye dose monitoring of workers

Table 1 Proposed dose levels for implementation of dose monitoring (12)

Tissue	Dosimeter position	Dose quantity*	Annual dose (mSv)	Monthly dose (mSv)	Protection / Dose monitoring recommendations
Eyes	Collar or headband	Hp(3)	1–6	0.2–0.5	Initial monitoring with collar or head dosimeter to establish dose levels. Regular monitoring recommended
Eyes	Collar or headband	Hp(3)	> 6 (15)**	> 0.5	Regular monitoring with collar or head dosimeter is required.

This guidance is based on the ICRP dose limit of 20 mSv/y

Hp(10) may be a reasonable substitute for imaging X-ray photons (including scatter).

Measured Hp(3) may be needed for other irradiations. Validity of collar measurements is irradiation geometry dependent.

Work still has to be done

 Calibration method for Hp(3) - Test geometry is critical. Standards for defining the clinical protection factor for PPE Irradiation geometry – Clinical task

Guideline protocol for eye protection and eye dose monitoring of workers

Table 2 Proposed dose levels for guidance on use of protective devices ⁽¹²⁾

IRPA

Tissue	Annual unprotected dose (mSv)	Protection recommendations			
Eyes	3–6	Ceiling suspended screens should be used where available. Protective eyewear may be considered where there is no other protective device.			
Eyes	6–10	Training in use of ceiling-suspended screens recommended. Protective eyewear should be considered, particularly where no other protective devices are available.			
Eyes	> 10	Protection essential. Both ceiling suspended shield and protective eyewear should be considered and at least one form used.			
These values are prudent for either 20 or 50 mSv/y Individual monitoring results will demonstrate the (im)proper use of external devices such as ceiling-suspended screens. Even with proper use of external devices, the collar reading can exceed 10 mSv/y. Protective eyewear is also needed for these individuals					

Percent of 68,740 monthly (non 'M') 2014 collar badge readings on medical workers.

Annualized Hp(10) mrem

SB1608 - IRPA/EYE - 14

PPE for Eyes

2		1		
	5			
	J.			

Strategy	Reduction Factor		
Leaded glasses	3-10		
Shielded drape	25		
Leaded glasses + drape	140		
Ceiling shield	130		
Rolling shield	1000		
Thornton Dauer et al 2010 IVIR			

hornton. Dauer et al 2010 JVIR

Dauer: EPRI 2016

Operator orientation matters

SB1608 - IRPA/EYE - 16

Orientation relative to the beam

Dauer: EPRI 2016

Protection factor for fluoro glasses?

- A minimum attenuation factor of three (3) for each eye is desirable.
- Dependent on device construction, geometry, operator's height, operator's motion, etc.
- Operational evaluation in a facility is possible.
- No available standard that accounts for known major variations in the orientation of the individual's head in the scatter field.

SB1608 - IRPA/EYE - 18

IRPA (EPRI) Conclusions

- Lens of eye dose limits of 20 50 mSv/y.
- Open question: Should <u>all</u> observable opacities be treated as cataracts?
- For the USA (assuming eye 50mSv/y) protective glasses with a minimum factor of 3 are consistent with the allowance for protective aprons.
- Adjustment for eye PPE should be as routine as adjustment for body PPE.

SB1608 – IRPA/EYE - 20