ANGULAR RESPONSE OF POLYMER FILMS IRRADIATED WITH ACCELERATED ELECTRON BEAM

Ana Maria Sisti Galante, Letícia Lucente Campos

Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP
Av. Prof. Lineu Prestes, 2242 Cidade Universitária, São Paulo-SP, Brasil 05508-000
e-mail: sgalante@ipen.br, lcrodri@ipen.br

1. INTRODUCTION

Incident electrons on material or on patient are characterized by its different parameters of energy, incidence angle and particles average range in a specific medium. When radiation is applied over a large area as in the skin diseases treatment or in the industry which large and irregular volumes should be irradiated, obliquely incident particles must be considered, since, this fact can result in different doses from those obtained irradiating material on normal direction exposure.

Polymer films present fast and inexpensive mean for performing accurate quantitative radiation dosimetry.
Ionizing radiation interaction: polymeric materials undergo structural changes due to molecular cross-linking and chain scission (degradation) reactions. It involves effects in the direct color change by the absorption of energetic radiation. Dosimetric Response: optical absorbance changes of the irradiated film for specific wavelengths, can be related with the absorbed dose.

2. OBJECTIVE

$>$ To evaluate the angular dependence on the radiation detector response for different electron beam incidence angles.

3. MATERIAL

Film pieces: - Polycarbonate (PC), Polymethylmetacrylate (PMMA), ($3 \times 1 \mathrm{~cm}^{2}$) - Cellulose Triacetate (CTA), Polyvinylchloride (PVC), - Fluoropolymer (PF).

4. EXPERIMENTAL

1- Electron accelerator

Dynamitron® Job 188 - RDI- Radiation Dynamics Inc.
2. Electron energies - $\mathbf{0 . 7 3 2}$ and $\mathbf{1 . 2 5} \mathbf{~ M e V}$

Absorbed doses - 10 and 30 kGy

3. Samples positioning

\checkmark normal direction exposure: horizontal - parallel to conveyor
\checkmark Angles: 30 , 60 e 90°.

Figure 1. Schematic drawing of the positioning of samples.

4. Sample Box irradiation

\checkmark Absorbed dose - 30 kGy
\checkmark Electron energy - 0.732 MeV
\checkmark Legend:
PC detector - position 90°
PC detector - position 60°
PC detector - position 30°
PC detector - position 0°

Figure 2. Schematic drawing of the sample box irradiated with PC detectors positioned at different angles and spread over the container volume. Front face shown.

