Performance Evaluation of Silicon Photomultiplier Sensor for Thickness Gauge

D Shin¹, JY Chung², J Whang², <u>KP Kim²</u>

¹ Woojin Inc, Hwaseong, Gyeonggi-do, South Korea

² Department of Nuclear Engineering, Kyung Hee University, Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do, South Korea

Background

Thickness Measuring Applications Using Gamma-rays

- Electrical, optical, and radiographic characteristics of silicon photomultiplier sensor
- Photo-multiplier tube and silicon photomultiplier sensor thickness gauge reduced in size for use in research labs

Thickness Gauge Performance Test

 Among transmissive thickness measuring technology application fields, a thickness gauge for steel rolling process was presumed to have been reduced to the size for use in research

*** Optical Characteristics**

Dark current

displayed a typical current-voltage characteristic curve. Dark current increased due to the effect of optical adhesive.

Photon current

produced the maximum current output at the section of 550 - 600 nm.

Dark count rate

the high counting rate in dark was considered

Silicon Photomultiplier Sensor

have a have a have a have a have a have a have							
	PMT	SiPM					
Photon detection efficiency	20%	15~20%					
Gain	106-107	106					
High voltage	1-2kV	25V					
Magnetic Field effect	Yes	No					
Threshold sensitivity	1 ph.e.	1 ph.e.					
Timing/10ph.e.	~100 ps	30 ps					
Complexity	High	Low					

labs.

 Based on this, a commercial level conventional NaI(TI) scintillator combined photomultiplier tube detector module and a CsI(TI) scintillator combined silicon photomultiplier sensor detector module that displayed the highest efficiency in the test

Results and Discussion

the biggest weakness of silicon photomultiplier sensor.

Gamma-Ray Characteristics

Energy resolution

Using this silicon detector module, energy resolutions of gamma rays (60 Co, 137 Cs, 57 Co, 22 Na, 54 Mn) were measured. Resolutions according to CsI(TI) and LYSO scintillator were $\pm 3\%$.

Objectives

- To assess characteristics of silicon photomultiplier sensor for a radiation detector module and applicability of the sensor as a thickness gauge
- To characterize electrical, optical and radiographic properties of the silicon photomultiplier sensor
- A detector module was set with optimal scintillator combination and tested as a thickness gauge.

Material and Methods

***** Electrical Characteristics

Noise equivalence charge

Displayed high values of 10,000 or higher after driving voltage application and was matched to a large-area sensor of 100 pF or higher in internal electrostatic capacity.

Signal to noise ratio

Indicated an increase in noise level at 27 V or higher. However, it was an operable level considering that the equipment was driven at room temperature.

Energy Resolution

2	Alum	inum	Copper		Iron		Lead	
(%)	PMT	SiPM	PMT	SiPM	PMT	SiPM	PMT	SiPM
0mm	23.0	16.6	22.4	17.7	23.0	17.7	23.0	16.0
2mm	23.3	18.5	22.0	17.5	23.3	18.6	22.7	18.0
4mm	23.2	19.1	23.4	18.2	22.1	18.9	22.3	17.8
6mm	23.3	18.5	22.6	18.8	22.8	18.9	22.1	18.4
8mm	22.9	18.2	22.3	18.8	22.9	18.9	21.6	17.8
10mm	22.9	19.0	23.0	18.8	22.2	19.1	22.0	17.9

Conclusion

- Using this system, four types of ²⁶Al, ²⁹Cu, ⁵⁵Fe and ⁸²Pb metal plate thickness were measured.
- Applicability of silicon photomultiplier sensor based detector in industrial fields was examined.
- Thickness gauge using silicon photomultiplier sensor module, as a whole, displayed mean deviation lower by 5% than thickness gauge using general photomultiplier module.

*** SiPM Characteristics Test**

- The noise equivalent quantum measurement system. Test board was constructed for the experiment. Charge Sensitive Amp was used EV-product's ev5093. In the test board, SiPM could be applied to the changeable reverse bias.

-SiPM had more large internal capacitance than other semi-conductors. Measured values were shown that NEQ increased after a breakdown voltage about 28 V by scan type

The dark count rate measurement system.
 SiPM could distinguish a single photon.
 Therefore, the experiment was processed in darkroom.

- The dark count rate did not change much compared to the neutron irradiation time.

Dynamic Range

Display a significant drop in performance either, as it was measured to be between 68 and 72 dB.

The coefficient of determination for both detector modules was 0.97 - 1.00 indicating a high level of correlation.
Mean deviation was within 0.67 - 5.55%.
As a result of comparing performance of both detectors tested under the same conditions, it was found that the silicon photomultiplier detector was more sensitive than general photomultiplier tube detector.

Acknowledgement

a course a placetary a placetary a place

This study was supported by research funds from BAERI (Basic Atomic Energy Research Institute: 2011-0006329) by the National Research Foundation of Korea.