

13th International Congress of the International Radiation Protection Association Living with Radiation – Engaging with Society Glasgow, Scotland, 13 – 18 May 2012

CALIBRATION OF ⁹⁰Sr⁺⁹⁰Y SOURCES USED FOR BETATHERAPY, **USING A POSTAL KIT OF THERMOLUMINESCENT DOSIMETERS** Patrícia L. Antonio¹, Rogério M. V. Silva², Divanizia do Nascimento Souza² and Linda V.E. Caldas¹ ¹ Instituto de Pesquisas Energéticas e Nucleares, Comissão Nacional de Energia Nuclear, IPEN-CNEN/SP Av. Professor Lineu Prestes 2242, 05508-000, São Paulo, Brazil ² Departamento de Física, Universidade Federal de Sergipe, UFS Av. Marechal Rondon s/n°, Jardim Rosa Elze, 49100-000, São Cristovão, Sergipe, Brazil patrilan@ipen.br, rmv.fisica@gmail.com, divanizi@ufs.br, lcaldas@ipen.br

1. Introduction

The need to calibrate ⁹⁰Sr+⁹⁰Y clinical applicators is recommended [1,2] and of great importance, because these sources can be very old, in

addition to the necessity of the establishment of a quality control program for these sources, assuring that the sources are used correctly and that the treatments of the patients will bring effective results. As at Brazil the clinical applicators are still largely utilized in betatherapy procedures, a dosimetric system for calibration of these sources, using thermoluminescent dosimeters (TLD), was developed at IPEN [3] and applied in hospitals at São Paulo city, with the objective to be sent in future as a postal system to other Brazilian clinics and hospitals that use ⁹⁰Sr+⁹⁰Y applicators.

2. Objective

The objective of this work was to verify the usefulness of the dosimetric system as a postal kit, using the usual mail system, in the calibration of ⁹⁰Sr+⁹⁰Y clinical applicators.

- \checkmark TL dosimeters: thin CaSO₄:Dy \longrightarrow (diameter = 6.0 mm; thickness = 0.2 mm)
- ✓ Evaluation system: Harshaw TLD Reader, model 3500

Characteristics of the ⁹⁰Sr+⁹⁰Y clinical applicators from Amersham, utilized in this work

Source Number	Source	Model	Nominal Activity (MBq)	Absorbed Dose Rate (Gy/s)	Calibration Date
1	Dermatological	1520 – SIA5	74	0.018 ± 0.004	27.11.1973
2	Ophthalmic	928 – SIA6	370	0.027 ± 0.008	14.01.1992
3	Ophthalmic	1522 – SIA6	370	0.022 ± 0.017	27.11.1973

Dosimetric postal system sent with an irradiation procedure and data collection forms

4. Results

- **1.** Dose-Response Curve of NIST Applicator
- ✓ Reference source: ⁹⁰Sr+⁹⁰Y applicator (NIST) secondary standard

- **2.** Irradiation of the TL dosimeters
- Dosimeters irradiated at the Federal University of Sergipe, Brazil
- ✓ Irradiation time of the applicators (according to the absorbed dose rates of the calibration certificates):
 - Applicator 1: 10 min
 - Applicator 2: 6 min

3. Determination of the Absorbed Dose Rates

Source	Absorbed Dos	Difference	
Number	Certificate	This work	(%)
1	0.0070 ± 0.0014	0.0076 ± 0.0015	-7.9
2	0.0167 ± 0.0050	0.0227 ± 0.0076	-26.4
3	0.0087 ± 0.0026	0.0189 ± 0.0059	-54.0

Applicator 1 \rightarrow The results agree with previous calibration results [7]

Applicator 2 \rightarrow The difference can be considered acceptable, because it is compatible with the uncertainty presented in the calibration certificate of the manufacturer (30%)

Absorbed Dose (Gy)

Applicator 3 \rightarrow Very high difference (it will be calibrated again)

5. Conclusions

Three ⁹⁰Sr+⁹⁰Y clinical applicators (one dermatological and two ophthalmic) were calibrated using a dosimetric postal system. The result obtained for the dermatological applicator was acceptable (uncertainty presented in its certificate of 20%), and in relation to the ophthalmic applicators, the difference between the absorbed dose rates obtained and those from their calibration certificates were great, specially for the applicator 3, due to several factors (small error during the irradiation, the format of the source, and inhomogeneity of radioactive material on the source surface.

References

- [1] IAEA, International Atomic Energy Agency. Calibration of photon and beta ray sources used in brachytherapy. IAEA-TECDOC-1274, Vienna (2002).
- [2] Soares, C. G. Comparison of NIST and manufacturer calibrations of ⁹⁰Sr+⁹⁰Y ophthalmic applicators. Med. Phys. 22 (9), 1487-1493 (1995).
- [3] Antonio, P. L.; Caldas, L. V. E. Application of a dosimetric system for calibration of ⁹⁰Sr+⁹⁰Y sources used in brachytherapy. Radiat. Meas. 46, 2025-2027 (2011).

The authors thank to FAPESP, CNPq, CAPES and MCT: Project INCT for Radiation Metrology in Medicine), for partial financial support.