Monte Carlo Simulation of Radiation Leakage and Design Optimisation for Doorsets of X-Ray Facilities

Mir Hosseini-Ashrafi PhD, MSRP, MIPEM, RPA m.hosseini-ashrafi@rpsltd-uk.com

RP&S Ltd

Radiation Protection & Solutions Ltd (UK)

www.radprosol.com

A- Summary

With the aim of doorset shielding optimisation, the results of this study show that:

- Radiation leakage may dominate the dose rate behind the door even when the core lead thickness has been correctly specified
- > A door mat solution against radiation leakage from the gap between the door and the floor could be effective but may not be desirable from other practical viewpoints
- > When performing radiation surveys, due consideration should be given to the possible heterogeneous distribution of the radiation field

B-Design guidelines

C- Material & Methods

(i) Manufacturing considerations*

- > Door weight
- > Mechanical integrity
- > Standards (e.g. Fire resistance)
- > Finishing preferences
- > Cost:
- Materials
- > Fabrication
- Installation
- > Durability and maintenance considerations

* The information provided by **WARDRAY PREMISE LIMITED** in respect of the manufacturing considerations is gratefully acknowledged

(ii) Monte Carlo simulations

- 90kVp X-rays, incident on a water phantom (30x30x30cm³) placed at the centre of the examination room
- MCNPX version 2.5.0
 - Photon Flux Mesh Tally
 - Particle Flux Tally dose function modified
 - Cut-off energy 10keV
 - Relative errors < 5% (1.s.d.)</p>

(iii) Doorset design

- > Hardwood
- > Lead 2.24 mm (Code 5)
- Fixture and fittings
- Expanding smoke seals
- Lead lined Gypsum wall

D- Results 1- Leakage through the door & floor gap

E- Results 2- Optimisation of shielding design

(i) floor level detail (without lead mat)

Un-optimised shielding design

Optimised shielding design: additional lead incorporated in the door and frame

Leading to improvement in dose rate of \geq 30%

(ii) Head level detail

Un-optimised shielding design

Leading to improvement in dose rate of \geq 45%

(iii) Centre level detail

Un-optimised shielding design

Leading to improvement in dose rate of \geq 45%

(iv) Leakage dose rates behind the shielded door*

	Height of simulation point from the floor		
	50 cm	100 cm	170 cm
Un-optimised design: without door mat	16	9.2	8.3
Optimised design: without door mat	11	4.8	4.5
Optimised design: with door mat	3.2	3.1	2.6

* Expressed as the ratio of dose rate behind the shielded door to the dose rate behind the leakage-free barrier 2.24 mm thickness of lead; door to floor gap set at 8 mm

Optimised shielding design:

additional lead incorporated in the door and frame