# Comparison of Radiation Shielding Requirements for <sup>192</sup>Ir, <sup>60</sup>Co and <sup>169</sup>Yb HDR Brachytherapy Sources Using Monte Carlo Simulations

Mir Hosseini-Ashrafi PhD, MSRP, MIPEM, RPA m.hosseini-ashrafi@rpsltd-uk.com

and H El-Shaer Portsmouth Hospitals NHS Trust, Portsmouth, UK

**RP&S** Ltd

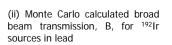
Radiation Protection & Solutions Ltd (UK)

#### A- Summary

With the aim of comparing the differences in the shielding requirements, the results of this study show that:

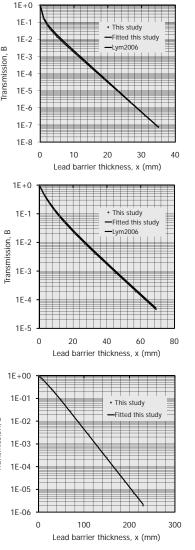
- Selection of <sup>169</sup>Yb over <sup>192</sup>Ir and <sup>60</sup>Co sources would afford significantly less massive direct shielded doors
- > For facilities with a typical maze, the <sup>169</sup>Yb source may not afford a significant saving on the shielding thickness requirement for the door
- > Radiation leakage may dominate the dose rate behind the door even when the core lead thickness has been correctly specified

#### **B- Monte Carlo simulations**


- > Realistic modelling of brachytherapy radiation sources , placed at the centre of a typical treatment room in air and also at the centre of a water phantom
- MCNPX version 2.5.0
- Photon Flux Mesh Tally
- Particle Flux Tally dose function modified
- Cut-off energy 10keV ۶
- Relative errors < 5% (1.s.d.) Þ

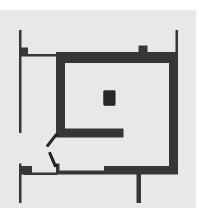
### C- Results 1: Primary barrier

> For the <sup>169</sup>Yb source the lead thickness reduction relative to the <sup>192</sup>Ir source was found to be about three HVLs


> The primary barrier lead thickness required for the 60Co source was found to be about five HVLs higher than that required for the <sup>192</sup>Ir source

(i) Monte Carlo calculated broad beam transmission, B, for 169Yb sources in lead

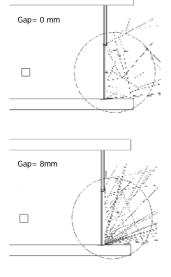


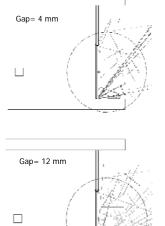

(iii) Monte Carlo calculated broad beam transmission, B, for 60Co sources in lead

Transmissior

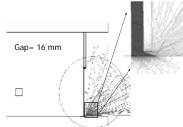


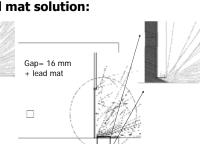
# www.radprosol.com


## D- Results 2: Door shielding




|                                    | Dose rate behind the shielded door $(\mu Svhr^{-1})^*$ |                   |                  |
|------------------------------------|--------------------------------------------------------|-------------------|------------------|
|                                    | <sup>169</sup> Yb                                      | <sup>192</sup> Ir | <sup>60</sup> Co |
| 6 mm Pb door<br>No phantom         | 0.6                                                    | 0.7               | 3.0              |
| 6 mm Pb door<br>With water phantom | 0.2                                                    | 0.4               | 1.6              |
| 9 mm Pb door<br>No phantom         | -                                                      | -                 | 1.8              |
| 9 mm Pb door<br>With water phantom | -                                                      | -                 | 1.0              |


\* For typical <sup>192</sup>Ir and equivalent <sup>169</sup>Yb and <sup>60</sup>Co sources set-up at the centre of a treatment room with a maze


### E- Results 3: Leakage through the door & floor gap









