

Calibration verification by Monte-Carlo simulations of a total gamma counting tunnel for clearance purposes

Tommaso NALIN¹, Alessandro PORTA¹, Andrea A. M. RAVAZZANI², Celso OSIMANI²

- ¹ Politecnico di Milano Dipartimento di Energia, Piazza Leonardo da Vinci 32, 20133 MILAN (ITALY)
- ² European Commission, Joint Research Centre, Nuclear Decommissioning Unit, Ispra VARESE (ITALY)

1. Introduction

Very low level radioactive materials aimed to be recycled, reused or disposed of can be released by JRC lspra from regulatory control under the condition that the radionuclide concentrations content are below the specific clearance levels provided by the Italian Nuclear Safety Authority. JRC bought a commercial measuring system, the Total Gamma Measurement Chain (TGMC), to verify such condition on a group of containers statistically representative of the homogeneous group to be released and defined by a nuclide vector W.

2. TGMC system layout

•eight plastic scintillators with photomultiplier disposed to form a tunnel •every scintillator shielded by lead plates each container through three measurement steps
activity A_w average of A^d_w for d detectors.

•Calibration through standard calibration container (roughly homogeneous distribution): density varying the number of steel plates
activity by ⁶⁰Co planar source and other mono-energetic point sources

3. Measurement method

Ad_w, determined by the d detector of the TGMC, are expressed by:

$$\mathbf{A}_{W}^{d} = \left(\dot{R}_{\Delta}^{d} + z_{sta}^{d}\right) \frac{f_{T}^{d}}{r_{W}}$$

 $\dot{R}^{d}_{\scriptscriptstyle \Delta}$ d detector net response

 f_T^d global transfer function for nuclide vector W

 f^d_{T} and r_w are correction factors function of standard container geometry and material density:

$$f_T^d = \frac{1}{T_{1.17} \beta_{Co60,1.17} + T_{1.33} \beta_{Co60,1.33}} \quad \text{ for eleven densities;}$$

It is defined:

$$r_w = \sum_w w_w r_w = \sum_w \sum_i \eta(E_i) \beta_{w,i}$$
 only for 0.5 g/cm³ and 2.1 g/cm³.

$$\eta(E_i) = \frac{T(E_i)}{T_{1.17}\beta_{Co60,1.17} + T_{1.33}\beta_{Co60,1.33}}$$

and it is determined through interpolation of η_i values determined for k mono-energetic sources by:

$$\eta_i \beta_{i,k,mon} = \frac{\dot{\mathbf{R}}_{k,mon} \mathbf{A}_{Co60}}{\dot{\mathbf{R}}_{Co60} \mathbf{A}_{k,mon}}$$

where activities are known and detector responses measured

fd_T and r_w are factors obtained by mass attenuation coefficient of iron and apply to all types of material

zd_{sta} increases the activity value to have a true value with 95% probability.

4. In-homogeneity issue, safety factor

There is no safety factor for intrinsic non homogeneity of standard calibration container and measured ones.

We want to asses the deviation introduced by the in-homogeneity, assumed as typical, of the standard calibration container and extend it to all the measurements performed by the use of a safety factor .

5. TGMC measurement method verification by Monte Carlo

Monte Carlo model simulates TGMC in two different configurations: •actual standard calibration container ideal homogeneous calibration container

Determination of the energy threshold in the model The energy threshold renders minimum the difference between the detector response experimentally determined and the one determined by the simulation

ſ	Detector	1	2	3	4	5	6	7	8
	E _s [keV]	318	302	330	272	290	250	252	194

Validation of the model

A comparison between a Monte Carlo simulation and an actual measurement on a homogeneous matrix and source of ⁴⁰K validated the model used:

Measurement	z[cps]	Δ[%]
TGMC	2372,455	/
Monte Carlo Model	2659,771	+12,11

Use of the model for the verification of the global transfer function The average deviation of the correction factors $f_{\rm T}$ for the heterogeneous calibration standard container and the homogeneous ideal container is :

De	nsity 0.5 g/cm ³		Der	nsity 2.1 g/cm ³	y 2.1 g/cm ³		
f_{T} – Heterogeneous	fr -Honogeneous	∆[%]	ft - Heterogeneous	f1-Honogeneous	∆[%]		
155,0467925	135,1199731	+14,75	459,7014325	334,1076519	+37,21		

The deviation curve at different energies is:

$$\Delta(E) = \frac{\eta_{in \text{ hom ogeneous}} - \eta_{\text{hom ogeneous}}}{\eta_{\text{hom ogeneous}}}$$

The deviation of the overall transfer function from its true value is:

Configuration	Density 0.5 g/	cm ³	Density 2.1 g/cm ³		
configuration	662 keV	1836 keV	662 keV	1836 keV	
Deviation [%]	+11,20	-2,75	+8,50	-34,93	

and the calibration performed by the calibration standard container is overestimating the fully homogeneous one only at low energies.

6. Conclusions

The activity measured by TGMC may underestimate the actual activity. Therefore, a safety factor f_{mon} equal to 1.25 has been introduced in the system algorithm. This value has been determined by linear interpolation for the maximum density permitted in containers (about 1.6 g/cm³) at the energy of 1836 keV .

$$\mathbf{A}_{W}^{d} = \left(\dot{R}_{\Delta}^{d} + z_{sta}^{d}\right) \frac{f_{T}^{d} \cdot f_{mon}}{r_{W}}$$

Celso Osimani

Contact

European Commission • DG Joint Research Centre Nuclear Decommissioning Unit E-mail: celso.osimani@ec.europa.eu

