Transfer of 99Tc from Soils to Rice and Upland Crops

Y.H. Choi*, K.M. Lim, I. Jun, D.K. Keum, I.G. Kim Korea Atomic Energy Research Institute 1045 Daedeokdaero, Daejeon, Korea (yhchoi1@kaeri.re.kr)

Introduction

- The fission yield of ⁹⁹Tc is comparatively high 6%.
- A beta emitter whose half life is very long 2.1 x 10⁵ years.
- Environmentally very important in the RW disposal.
- Its release into the environment can also occur by spent-fuel reprocessing and reactor accidents.
- Greenhouse experiments on the transfer of ⁹⁹Tc from soils to various crop plants to acquire TF (transfer factor) values for use in the ingestion dose assessment.

Materials & Methods

Experimental soils & 99Tc labeling

- Eight different soils collected around a nuclear site in Korea

Soil code	pH (1:5)	OM (%)	Clay (%)	Texture
Α	5.5	3.7	11.0	Loam
В	5.1	4.2	15.4	Silt loam
С	5.6	3.0	26.9	Loam
D	5.1	4.9	25.2	Loam
E	6.7	5.2	14.0	Silt loam
F	6.1	5.6	12.4	Sandy loam
G	4.7	2.3	26.5	Loam
н	7.2	2.6	32.9	Clay loam

- Premix of 400 g dry soil and 30 ml ⁹⁹Tc solution
- 240 kBq ml⁻¹ for rice and 23 kBq ml⁻¹ for upland crops.

- Mixing the premix and the main volume of soil
- 352 kBq kg⁻¹-dry soil for rice and 35 kBq kg⁻¹-dry soil for others.

Plant culture

Sampling & measurements

- Harvested at edible maturities.
- Activity analyses by total beta counting for powder or ash samples
- Plant uptake was quantified with a transfer factor (TF, dimensionless) defined as follows;

$$TF = \frac{Plant\ concentration(Bqkg^{-1})}{Soil\ concentration(Bqkg^{-1} - dry)}$$

Results of the Experiments

⁹⁹Tc transfer to rice (dry)

Coil	TF value (dimensionless)		
Soil	Brown rice	Straw	
Α	1.4 x 10 ⁻³ ±5.3 x 10 ⁻⁴	$1.0 \times 10^{0} \pm 2.2 \times 10^{-1}$	
В	2.5 x 10 ⁻³ ±6.8 x 10 ⁻⁴	$1.3 \times 10^{0} \pm 9.5 \times 10^{-2}$	
С	$5.4 \times 10^{-4} \pm 2.6 \times 10^{-4}$	$5.3 \times 10^{-1} \pm 9.7 \times 10^{-2}$	
D	$8.4 \times 10^{-4} \pm 3.7 \times 10^{-4}$	$6.6 \times 10^{-1} \pm 2.5 \times 10^{-1}$	
AM±SD	$1.3 \times 10^{-3} \pm 9.4 \times 10^{-4}$	$8.8 \times 10^{-1} \pm 3.6 \times 10^{-1}$	
GM / GSD	1.1 x 10 ⁻³ / 1.92	$8.3 \times 10^{-1} / 1.52$	

⁹⁹Tc transfer to soybean (dry)

Soil	TF value (dimensionless)			
	Seed	Shell	Stem	Leaf
E	1.6 × 10 ⁻¹	6.7×10^{0}	1.3×10^{1}	-
F	2.0 × 10 ⁻¹	$9.5 \times 10^{\circ}$	2.1 × 10 ¹	1.2×10^{2}
AM	1.8 × 10 ⁻¹	8.1 × 10 ⁰	1.7×10^{1}	-

99Tc transfer to radish

Soil	TF value (dimensionless)			
	Root (fresh)	Leaf (fresh)	Root (dry)	Leaf (dry)
G	8.0 x 10 ⁻¹	3.1×10^{1}	1.1×10^{1}	3.5×10^2
Н	1.0×10^{0}	2.6×10^{1}	1.3×10^{1}	3.0×10^2
AM	9.0 x 10 ⁻¹	2.8×10^{1}	1.2×10^{1}	3.2×10^2

⁹⁹Tc transfer to Chinese cabbage

Soil	TF value (dimensionless)		
	Leaf (fresh)	Leaf (dry)	
G	1.1×10^{1}	1.4×10^{2}	
Н	8.8 × 10°	1.2×10^{2}	
АМ	$9.6 \times 10^{\circ}$	1.3×10^{2}	

Summary & conclusions

- Much higher transfers were observed for the upland crops than for the paddy rice, which was grown in anaerobic conditions (TcO₄-¹ → TcO₂).
- Seed TF values were much lower than those of other above-ground parts indicating a very low mobility of ⁹⁹Tc to seeds.
- The GMs for the rice and the AMs for the upland crops are recommended for a temporary use in Korean foodchain dose assessment.
- IAEA values (TRS-472) for rice and vegetables are considerably different from the present values indicating the necessity of using as many site-specific data as possible.