Fire Test Evaluation using the Kerosene and Aviation

K.S. Bang, J.C. Lee, C.S. Seo, K.S. Seo, H. J. Kim*

Korea Atomic Energy Research Institute, Korea Radioactive Waste Management Corporation 150 Dukjin-Dong, Yuseung-gu, Daejeon, Rep. of Korea, 305-353

Introduction

NRC preformed an evaluation on a long duration fir → TN-68, HI-STAR 100 & LWT Cask

Greiner(Nevada University), Lopez (SNL) performed → Research on fire accidents using Jet fuel

Compartment Fire

- Phase of Fire Development
 - Initiation
 - → Growth
 - Steady-state
 - Decay

- ☐ Heat Transfer Mode
 - → Heat is generated by the fire source
 - Transfer from combustion zone to upper layer by convection and radiation
 - → This heat is transferred to
 - Adjacent wall by radiation and conduction
 - Compartment lower layer by radiation
 - Ambient atm. by convection through openings
- Description of Fire Test Facility

→ Mat'l : Light Concrete → Thickness: 10 cm

→ Dimension : 4 m(W) X 4 m(L) X 4 m(H)

- Openings
 - Front & Rear side
 - 40 cm(H) X 70 cm(W)
 - 50 cm(H) X 80 cm(W)
 - Roof : 30 cm
- **→** Thermocouples
 - K-type, Inconnel-sheathed
 - Total 63 T/C: Heights of 80 cm, 200 cm, 320 cm

Fire Test

☐ Fire Source

→ Test 1 ~ Test 3 : Kerosene

→ Test 4 ~ Test 6 : Jet-A-1

Test	Opening Size (cm)	Fuel (liter)
1	50 x 80	350
2	50x80 + 30	50
3	40x70 + 30	50
4	50 x 80	50
5	50x80 + 30	50
6	40x70 + 30	50

Test Results

■ Engulfed Flame Temperature & Time

Fire Source		Engulfe	Engulfed		
		Upper	Middle	Lower	Flame Time(min.)
Kerosene	Test 1	561	-	-	120
	Test 2	675		-	15
	Test 3	611		-	23
Jet-A-1	Test 4	618	602	551	15
	Test 5	692	677	616	12
	Test 6	646	623	568	17

☐ Heat Release Rate & Mass Flow Rate

	Kero	sene	Jet-A-1		
	Test 2	Test 3	Test 5	Test 6	
Heat release rate (kJ/s)	1,714	1,155	2,160	1,524	
Mass flow rate (kg/s)	0.040	0.027	0.050	0.035	
Ventilation factor (m ^{5/2})	0.566	0.354	0.566	0.354	
Density (kg/m³)	820	820	797.6	797.6	
Combustion time (s)	930	1380	720	1020	

Conclusions

- □ Combustion time : Jet-A-1 < Kerosene</p>
 - ➡ Flame Temperature : Jet-A-1 > Kerosene
- Openings became bigger
 - Fuel consumption rate became bigger
 - Flame Temperature was higher
- In compartment fire
 - Flame temperature gradually increased

