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ABSTRACT 
Uncertainty is an important characteristic in many real-life settings. Crises and disasters are two of them. 
They bring about conditions that could lead to undesirable economics or unacceptable HSE state of affairs. 
Disaster management stands for processes and procedures aimed at dealing with a disaster in a manner that 
minimizes damage and allows the affected population to recover quickly. Critical industries, such as nuclear 
power generation plants, are aware of the need for efficient disaster preparedness and response. 
In disaster settings, the exact times and magnitudes of the events cannot be predicted with certainty. They 
are probabilistic events, and require corrective intervention measures. Intervention requires the optimal 
allocation of scarce resources. Therefore, researchers recognize the need to establish a cost-effective 
(efficient) management and control of disaster events. 
In general, published literature in this area seeks to provide more accurate and/or better technological 
infrastructure of systems to support disaster recovery efforts. However, there is a need to examine key 
features of stochastic systems of natural events that may affect the decision-making process in nuclear and 
radiological disaster monitoring, control and recovery, in order to release pressure on operators in NPP 
control rooms. 
This paper treats the inventory of direct losses of a disaster as a stochastic system (human casualties, 
property destroyed, damaged and recoverable material and equipment). It proposes the Queuing Theory (a 
Markovian birth-and-death stochastic process) to model the inventory system of human casualties. This is 
a stochastic method, used extensively in Operations Research to model queuing and inventory systems, 
health care systems, inventory management, quality control and inspection, and population dynamics. 
Here, the Queuing Theory is used as a model for the analysis, management and control of disaster recovery 
efforts. Medical treatment centers are assumed to receive casualties arriving and serviced in a Poisson 
probability distribution. That is, Poisson distribution is used to analyze a system of medical relief centers 
(disaster outcomes) as a queuing system in which both arrivals and service of casualties are assumed 
completely random in time, with parameters: 

• λ: mean rate of arrival; equal to 1/E[Inter-arrival-Time], where E[.] denotes the expectation 
operator. 

• µ: mean medical service rate; equal to 1/E[Service-Time]. 
• ρ = λ/µ for single server queues: utilization of the server; also the probability that the server is 

busy or the probability that someone is being served. 
• c: number of medical servers. 

The design of a queuing system to manage and control the inventory of casualties is optimal when a steady-
state prevails. If the number c of required medical servers is to be determined, the procedure starts with 
determining the smallest integer c such that the "service center utilization factor"= <1 and to study the 
resulting values of the corresponding "measures of effectiveness" until a specific measure (such as the 
"waiting time") is obtained that is acceptable by the Disaster Management Center or Disaster Monitoring 
Authority from an economic or humanitarian disaster recovery point of view. 

Keywords: Disaster, Management, Queueing Theory, Markovian Theory 
  
1.  INTRODUCTION 
Uncertainty is an important characteristic in many real-life settings. In industrial accidents, for example, a 
plant can run into circumstances that impede their safe performance. In industrial accidents, the exact times 
and magnitudes of the events cannot be predicted with certainty. Such events require rapid intervention 
measures, which require the optimal allocation and deployment of scarce resources. Hence, there is a need 
to examine key features of stochastic systems of natural events that may affect the decision-making process 
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in nuclear and radiological disaster monitoring, control and recovery, in order to release pressure on 
operators in NPP control rooms [1-5]. 
This paper treats the inventory of direct losses of a disaster as a stochastic system (human casualties). It 
proposes the Queuing Theory (a Markovian birth-and-death stochastic process) to model the inventory 
system of disaster events or outcomes. This is a stochastic method, used extensively in Operations Research 
to model queuing and inventory systems, health care systems, inventory management, maintenance and 
availability, logistics, and population dynamics [1-14]. 
Here, the Queuing Theory is used as a model for the analysis, management and control of disaster 
recovery efforts. Service centers are assumed to receive customers (i.e. disaster casualties) arriving and 
serviced in a Poisson probability distribution. That is, Poisson distribution is used to analyze a system of 
relief service centers (disaster outcomes) as a queuing system in which both arrivals and service of 
customers (i.e. casualties) are assumed completely random in time, with parameters: 

• λ: mean rate of arrival; equal to 1/E[Inter-arrival-Time], where E[.] denotes the expectation 
operator. 

• µ: mean service rate; equal to 1/E[Service-Time]. 
• ρ = λ/µ for single server queues: utilization of the server; also the probability that the server is 

busy or the probability that someone is being served. 
• c: number of service centers. 

 Therefore, the need is recognized to establish a cost-effective (efficient) management and control of the 
situation. 

2. FORMULATION OF THE MODEL 

We treat the “disaster recovery” efforts as a “Queuing System”. A queuing system is a population growth 
process, where a customer (in this case a “casualty”) arrives at a medical help facility, wait in a queue if 
all servers are busy or receive medical help and finally leave the facility, Fig. 1.  

Denote by {N(t); t ≥ 0} the number of casualties arriving at the medical help at time  t ≥ 0. If  {N(t); t ≥ 
0} is a  “Queuing System”, its realizations are step functions that start at N(0) and have upward jumps of 
size 1 when a casualty arrives for medical care and downward jumps of size 1 when a casualty leaves.    

2.1 Assumptions 

The following simplifying assumptions are made: 

Queueing System: We assume an initial number N(0) of casualties in the medical help system at time 𝑡𝑡0. 
This medical help system is a Poisson birth-death population growth process with a population consisting 
of N(t) casualties either waiting for medical help or currently being helped at time t. A “birth” occurs 
when a casualty arrives and enters the system. A “death” occurs when a casualty gets the needed help and 
leaves the system.  The state of the system, at time t, is the number N(t) of casualties still under medical 
care in the system. 

Queue Characteristics: Using the Kendall-Lee notation, we specify the characteristics of the Queueing 
System by 5 parameters: v/w/x/y/z, where: 

v refers to the pattern in which casualties arrive at the medical facility for help (known as “arrival 
pattern”). 

w refers to the medical intervention pattern (known as “service pattern”). 



  

  

x refers to the number of intervention staff. We assume that no casualty waits while an intervention staff 
is idle. 

y refers to the medical facility system “capacity”; refers to the maximum number of casualties either 
being attended to or waiting in the queue. 

z refers to the order in which casualties are attended to. 

2.2 Derivation of the Model 

Using the Kendall-Lee notation (v/w/x/y/z) for the characteristics of a queue, we first consider an 
M/Mc/K queueing system for the management of disaster casualties, where:   

M specifies the arrival pattern as a Markovian (i.e. stochastic) birth process, with “average arrival rate” λ. 
We assume the inter-arrival time, 1/ λ, to follow the exponential probability distribution; P (T ≤ t) = 1- 
𝑒𝑒−λ𝑡𝑡  ; t ≥ 0. 

M specifies the service pattern as a Markovian (i.e. stochastic) death process, with “average service rate” 
μ. We assume the service time, 1/μ, to also follow the exponential probability distribution; P (T ≤ t) = 1- 
𝑒𝑒−μ𝑡𝑡  ; t ≥ 0. 

c is the number of intervention staff in the medical facility available to attend to arriving casualties ; c is a 
finite integer c > 0. 

K specifies the “capacity” of the queueing system; limited integer; equal to a finite integer K>0.  

The queue discipline, z in the Kendall-Lee notation, is assumed here to be a “first-in-first-out” (FIFO) 
discipline, i.e. service is in order of arrival. 

Intuitively, K>c, since the maximum number of casualties must be as large as the number of medical staff 
available to attend them. 

The “state” of the queueing system at time t, is given by the state probability 𝑃𝑃𝑛𝑛(t) that the system has n 
casualties either waiting for attendance or being attended to.  

The above assumptions yield the following arrival rate  λ𝑛𝑛 and service rate μ𝑛𝑛 [6, 9, 13, 14] 

λ𝑛𝑛 =  �
 𝜆𝜆  𝑓𝑓𝑓𝑓𝑓𝑓 0 ≤ 𝑛𝑛 < 𝐾𝐾 
0  𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛 ≥ 𝐾𝐾        �                                                                            (1) 

μ𝑛𝑛 =  �
 𝑛𝑛µ  𝑓𝑓𝑓𝑓𝑓𝑓 0 ≤ 𝑛𝑛 ≤ 𝑐𝑐 
 𝑐𝑐µ   𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛 > 𝑐𝑐         �                                                                          (2) 

Define the medical facility “utilization factor”, ρ, as the expected number of casualties arriving per mean 
service time, µ𝑛𝑛:  

ρ  ≡ 𝜆𝜆𝑛𝑛
µ𝑛𝑛

                                                                                                                         (3) 

In other applications, ρ is also called the “traffic intensity” of the queue. 



  

  

The queue can reach a steady state if, and only if, ρ≤ 1. If ρ> 1, casualties arrive at a higher rate than the 
medical facility can service them. That is, the queue would grow without control and a steady-state cannot 
prevail. 

For this finite capacity system (M/M/c/K), steady state exists for all ρ = 𝜆𝜆
𝑐𝑐µ

 . 

The forward Kolmogorov equations  [6, 7, 9, 13] give the state probabilities for the generalized 
Markovian birth-death process: 

𝑑𝑑𝑝𝑝𝑛𝑛(𝑡𝑡)
𝑑𝑑𝑡𝑡

 = − (λ𝑛𝑛 + μ𝑛𝑛)𝑝𝑝𝑛𝑛(t) +  μ𝑛𝑛+1𝑝𝑝𝑛𝑛+1(t) +  λ𝑛𝑛−1𝑝𝑝𝑛𝑛−1(t)       for n > 0                      (4a) 

And 

𝑑𝑑𝑝𝑝0(𝑡𝑡)
𝑑𝑑𝑡𝑡

 = − λ0𝑝𝑝0(t)  +  μ1𝑝𝑝1(t)       for n=0                                                                     (4b)                 

The steady-state probabilities are derived by setting the steady-state condition 𝑑𝑑𝑝𝑝𝑛𝑛/𝑑𝑑t=0 in the above 
equations, which yields [6, 9, 13, 14]: 

 𝑝𝑝𝑛𝑛 = 𝜆𝜆𝑛𝑛−1
μ𝑛𝑛

 𝑝𝑝𝑛𝑛−1                                                                                                                 (5) 

Or   

𝑝𝑝𝑛𝑛 =  𝜆𝜆𝑛𝑛−1
μ𝑛𝑛

𝜆𝜆𝑛𝑛−2
μ𝑛𝑛−1

… . . .. 𝜆𝜆0
μ1

 𝑝𝑝0                                                                                               (6) 

Where, 

𝑝𝑝0 = [𝑐𝑐𝑐𝑐
𝑐𝑐!

 (𝐾𝐾 − 𝑐𝑐) +  ∑ 𝑐𝑐𝑛𝑛

𝑛𝑛!
𝑐𝑐
𝑛𝑛=0     ]−1     for ρ = 1                                                           (7a) 

And  

𝑝𝑝0 = [𝑐𝑐ρ
𝑐𝑐+1(1−ρ𝑘𝑘−𝑐𝑐)
𝑐𝑐!(1−ρ)

 (𝐾𝐾 − 𝑐𝑐) +  ∑ (𝑐𝑐ρ)𝑛𝑛

𝑛𝑛!
𝑐𝑐
𝑛𝑛=0     ]−1     for ρ ≠ 1                                        (7b) 

And 

𝑝𝑝𝑛𝑛 =

⎩
⎨

⎧
(𝑐𝑐ρ)𝑛𝑛

𝑛𝑛!
𝑝𝑝0       𝑓𝑓𝑓𝑓𝑓𝑓  1 ≤  𝑛𝑛 ≤ 𝑐𝑐 

𝑐𝑐𝑐𝑐ρ𝑛𝑛

𝑐𝑐!
𝑝𝑝0        𝑓𝑓𝑓𝑓𝑓𝑓  𝑐𝑐 <  𝑛𝑛 ≤ 𝐾𝐾

0                𝑓𝑓𝑓𝑓𝑓𝑓  𝑛𝑛 > 𝐾𝐾          

                                                                               (8) 

2.3 Measures of Service Effectiveness 

The measures of effectiveness of response actions taken during an emergency response to save lives 
and/or attend to casualties are given in terms of [6, 8, 14]: 

1. The average number of casualties in the queueing system (denoted by L), 
2. The average length of the queue (denoted by 𝐿𝐿𝑞𝑞), 



  

  

3. The average time a casualty spends in the system (Queue + Emergency Medical Intervention); 
denoted by W, 

4. The average time a casualty spends in the queue waiting for medical service  (denoted by 𝑊𝑊𝑞𝑞), 
5. The probability that a casualty spends at least t units of time in the system (denoted by  𝑊𝑊(𝑡𝑡) ), 

and 
6. The probability that a casualty spends at least t units of time in the queue waiting for service 

(denoted by  𝑊𝑊𝑞𝑞(𝑡𝑡) ). 
The first four measures (L, 𝐿𝐿𝑞𝑞 , W, and 𝑊𝑊𝑞𝑞) are related by the following logic [14]: 
Expected waiting time in the System = Expected waiting time in the queue + Expected medical service 
time. Hence, 

W = 𝑊𝑊𝑞𝑞 +  
1
µ
                                                                                          (9) 

where μ is the “average service rate”, defined above. 
Define  λ� as the effective arrival rate, which refers to only those casualties that actually join the system 
(i.e. when the system capacity K is not reached). 

Multiplying the equation (9) W = 𝑊𝑊𝑞𝑞 + 
1
µ
  by  λ� , we get,  L = 𝐿𝐿𝑞𝑞 + 

λ̅

µ
       

Hence, 

 λ� = λ (1- 𝑝𝑝𝐾𝐾 )                                                                                                                   (10) 

For the M/M/c/K queueing system in hand, the measures of effectiveness of emergency response to save 
lives and/or attend to casualties are given in terms of 𝐿𝐿𝑞𝑞 ,𝑊𝑊𝑞𝑞, W and L as follows [6, 13]: 

𝐿𝐿𝑞𝑞 = 
𝑐𝑐ρ𝑐𝑐+1

𝑐𝑐!(1−ρ)2
 [�1 − ρ𝑘𝑘−𝑐𝑐� − (1 − ρ)(𝐾𝐾 − 𝑐𝑐)ρ𝑘𝑘−𝑐𝑐   ] 𝑝𝑝0            (11) 

 𝑊𝑊𝑞𝑞 =  𝐿𝐿𝑞𝑞𝜆𝜆�                                                                                  (12) 

W = 𝑊𝑊𝑞𝑞 +  
1
µ
                                                                   (13)    

L =  λ� W                                                                                           (14) 

Equations (11) and (13) are called Little’s Formulas. 

The calculation of the measures of effectiveness is carried out in the following sequence: 

𝑝𝑝𝑛𝑛  →  𝐿𝐿 =  ∑ 𝑛𝑛𝑝𝑝𝑛𝑛𝑐𝑐
𝑛𝑛=0   →  W = 

𝐿𝐿
λ̅
   →   𝑊𝑊𝑞𝑞 =  -  

1
µ
    →   𝐿𝐿𝑞𝑞=  λ�𝑊𝑊𝑞𝑞 

The Case of a Single-Queue, Single-Server System 

A special, and simpler, case of the M/M/c/K queueing system is obtained when c=1. The M/M/1/K 
queueing system has the following governing equations [6, 7, 9, 13, 14]: 

 λ𝑛𝑛 =  �
 𝜆𝜆  𝑓𝑓𝑓𝑓𝑓𝑓 0 ≤ 𝑛𝑛 < 𝐾𝐾 
0  𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛 ≥ 𝐾𝐾        �                                                                                        (15) 



  

  

 𝑝𝑝𝑛𝑛 =

⎩
⎨

⎧
(𝑐𝑐ρ)𝑛𝑛

𝑛𝑛!
𝑝𝑝0       𝑓𝑓𝑓𝑓𝑓𝑓  1 ≤  𝑛𝑛 ≤ 𝑐𝑐 

𝑐𝑐𝑐𝑐ρ𝑛𝑛

𝑐𝑐!
𝑝𝑝0        𝑓𝑓𝑓𝑓𝑓𝑓  𝑐𝑐 <  𝑛𝑛 ≤ 𝐾𝐾

0                𝑓𝑓𝑓𝑓𝑓𝑓  𝑛𝑛 > 𝐾𝐾          

                                                                             (16) 

L = �
 𝜌𝜌
1−𝜌𝜌

− (𝐾𝐾+1)𝜌𝜌𝐾𝐾+1

1−𝜌𝜌𝐾𝐾+1
      𝑓𝑓𝑓𝑓𝑓𝑓  𝜌𝜌 ≠ 1 

𝐾𝐾
2

                                  𝑓𝑓𝑓𝑓𝑓𝑓 𝜌𝜌 = 1
        

�                                                                      (17) 

 With W, 𝑊𝑊𝑞𝑞, 𝐿𝐿𝑞𝑞 and  λ�  as for the M/M/c/K queueing system. 

The Case of Infinite-capacity M/M/1 System 

If the restriction of having a limited capacity is lifted, we get an infinite-capacity system, denoted M/M/1. 

Because of the infinite capacity, λ� = λ, and the measures of effectiveness become: 

L =  𝜌𝜌
1−𝜌𝜌

                                                                                                                           (18)   

𝐿𝐿𝑞𝑞=  𝜌𝜌
2

1−𝜌𝜌
                                                                                                                          (19) 

W = 1
𝜇𝜇−λ

                                                                                                                           (20) 

𝑊𝑊𝑞𝑞 = 𝜌𝜌
 λ−𝜌𝜌

                                                                                                                         (21) 
 

3. Balking and Reneging 

3.1 Balking 
Balking refers to the situation when a casualty arrives but not allowed to join the queue of the emergency 
service facility because the queue is too long, or because the casualty is in a state that requires different 
treatment. Balking is, therefore, state-dependent. It is modelled mathematically by a Balking Probability 
Function B(n), which is the probability that a casualty arrives but will not join the queue for the two 
reasons mentioned above. The Probability that the casualty will join the queue is therefore = 1- B(n). 
If the arrival rate λ is state-independent, the expected effective arrival rate into the emergency service 
facility is then, 𝜆𝜆𝑛𝑛 = [1- B(n)]λ which is a state-dependent. Note that B(0) = 0. 

3.2 Reneging 

Reneging refers to the situation where a casualty join the queue but then removed from it, either because 
the waiting time has become too long, or because of a change in service priorities. Reneging is therefore a 
state-dependent and acts to increase the mean service rate, μ. Reneging is modelled by defining a 
Reneging Probability Function, R(n), as: 

R(n) = lim
Δ𝑡𝑡→0

𝑃𝑃 {𝑎𝑎 𝑐𝑐𝑎𝑎𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐𝑡𝑡𝑐𝑐 𝑤𝑤𝑤𝑤𝑐𝑐𝑐𝑐 𝑏𝑏𝑒𝑒 𝑓𝑓𝑒𝑒𝑟𝑟𝑓𝑓𝑟𝑟𝑒𝑒𝑑𝑑 𝑤𝑤𝑛𝑛 𝑡𝑡𝑤𝑤𝑟𝑟𝑒𝑒 ∆𝑡𝑡 | 𝑛𝑛 𝑐𝑐𝑎𝑎𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐𝑡𝑡𝑤𝑤𝑒𝑒𝑐𝑐 𝑤𝑤𝑛𝑛 𝑡𝑡ℎ𝑒𝑒 𝑞𝑞𝑐𝑐𝑒𝑒𝑐𝑐𝑒𝑒 }/∆𝑡𝑡  

And adding it to the mean service rate of the emergency center. The effective service rate 𝜇𝜇𝑛𝑛 becomes: 



  

  

𝜇𝜇𝑛𝑛 = μ + R(n). Note that R(0) = R(1) = 0 

4. CONCLUSION 

A stochastic process approach has been used to model the problem of disaster management and control of 
the inventory of human casualties. The disaster casualty system is treated as a “queueing system”, and 
hence analyzed by the principles of queueing theory. We defined 𝑝𝑝𝑛𝑛(t) as the probability of n casualties 
arrive at the emergency medical care center during time interval t. We assumed that the inter-arrival times 
and the service times both follow the exponential distribution f(t) = α𝑒𝑒−𝛼𝛼𝑡𝑡, where α is the rate at which 
casualties arrive at the care center. The distribution of n (arrivals or departures) during t is assumed to be 
a Poisson Probability Distribution, 𝑝𝑝𝑛𝑛(t) = (λt)

𝑛𝑛

𝑛𝑛!
𝑒𝑒−𝜆𝜆𝑡𝑡,  n=0,1,2,3,………… 

The design of the queueing system to manage and control the inventory of the disaster casualties is 
optimal when a steady-state prevails. If the number c of service stations is to be determined, the 
procedure starts with determining the smallest integer c such that the “utilization factor” ρ = 𝜆𝜆

𝑐𝑐𝜇𝜇
 < 1 and to 

study the resulting values of the corresponding “measures of effectiveness” until a specific measure (such 
as the “waiting time”) is obtained that is acceptable to the Emergency Authorities. 

The specific choice of the number c depends on what the Emergency Authorities consider as acceptable 
for that stage of disaster recovery. 

Because of the unique “memoryless” property of the exponential distribution f(t) = α𝑒𝑒−𝛼𝛼𝑡𝑡 governing the 
inter-arrival times and the service times,, this unique property also shows that the Poisson process 
described by  𝑝𝑝𝑛𝑛(t) = (λt)

𝑛𝑛

𝑛𝑛!
𝑒𝑒−𝜆𝜆𝑡𝑡,  n=0,1,2,3,……… is completely random, and that the probability 

distribution of n events (births or deaths) occurring during time interval t is a Poisson distribution. 
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Figure 1: Components of an Emergency Queueing System 

 

 


