

J.L.R. Zafimanjato Institut National des Sciences et Techniques Nucléaires P.O.Box 4279, e-mail: , Antananarivo, MADAGASCAR Raoelina Andriambololona Institut National des Sciences et Techniques Nucléaires P.O.Box 4279, e-mail: , Antananarivo, MADAGASCAR S. Möbius

International for advanced Technological and Environmental Training, Forschungszentrum Karlsruhe

P.O Box 3640, 76021, e-mail: siegurd.moebius@ftu.fzk.de, Karlsruhe, GERMANY

Introduction

Natural radionuclides generally represent the main source of radiation exposure to the public. In the environment, they arise either from the direct radon release from the ground into ambient air or through dissolution natural U and Th-series into water. Radon exists at low concentration in surface waters, whereas its concentration in ground waters can be many orders magnitude greater. ²²²Rn is the radon isotope sufficiently abundant and long-lived to be a health concern with its decay products. Doses caused by ²²²Rn in the human body from drinking water has been estimated and compared with other models. Most of the water samples are surface water.

Methods

²²²Rn measurements

Water samples are analyzed on site using a portable liquid scintillation counter Triathler[™] (Figure 1). For calibration, a liquid scintillation spectrometer Berthold Betaszint 5000/300 is used. Counting efficiency for the Berthold counter is nearly 100% for each radionuclide α -emitter and 90% per β -emitter in equilibrium conditions into account (480% total in equilibrium). The ²²²Rn concentrations found are given in Table [1].

Detection of ²²⁶Ra in water

Determination of ²²⁶Ra by the ingrowth of ²²²Rn and its progenies into organic cocktail 12 mL of a ²²⁶Ra containing water sample are pipetted under 8 mL of Beta Plate ScintTM or any other water immiscible organic cocktail in a 20 mL glass vial. The vial is closed and refrigerated with the cap downwards in order to avoid ²²²Rn losses through the plastic cap. After equilibrium between ²²⁶Ra and ²²²Rn has been established (2 to 3 weeks) the vial is shaken vigorously and stored for further 3 h. The measurement is then done in a wide energy channel usually with about 480% counting efficiency (100% counting efficiency for each ²²²Rn, ²¹⁸Po, ²¹⁴Po as α-emitter, for β-emitting daughters ²¹⁴Pb and ²¹⁴Bi about 90% counting efficiency each). The ingrowth of ²²²Rn may be estimated nearly 50 % after four days storage which corresponds approximately to 50% of ²²⁶Ra concentration in water sample (Figure 2).

Figure 2

Results and Discussion

 170.24 ± 3.37

 251.90 ± 1.8

 55.25 ± 0.9

VTV02

AMS01

AMS02

Table [1]. ²²² Rn concentrations in Water samples from Vinaninkarena-Vatovory-Ambohitraivo						
Sample	Activity of ²² Rn	Sample	Activity of ²² Rn			
	[mBq.L ¹]		$[\mathbf{mBq.}\mathbf{L}^{1}]$			
MNG01	10 ± 3.37	VJV01	46.75 ± 3.37			
MNG02	107.93 ± 3.37	VJV02	2.70 ± 3.37			
MNG03	174.60 ± 3.37	VNK01	91.57 ± 0.9			
MNG04	70.74 ± 3.37	VNK02	111.88 ± 1.8			
MNG05	104.82 ± 3.37	VNK03	30.68 ± 1.8			
VTV01	703.60 ± 3.37	VNK04	17.50 ± 1.8			

VNK05

VNK06

VNK07

 12.64 ± 1.8

 32.74 ± 1.8

 155.17 ± 1.8

Table [2]. 226 Ra concentrations in Water samples						
measured by ingrowth of ²²² Rn						
Sample	Activity of ²²⁶ Ra [mBq.L ⁻¹]	Sample	Activity of ²²⁶ Ra [mBq.L ⁻¹]			
MNG01	< MDC*	VJ V01	100 ± 70			
MNG02	230 ± 20	VJV02	100 ± 80			
MNG03	380 ± 32	VNK01	340 ± 28			
MNG04	180 ±15	VNK02	240 ± 20			
MNG05	200 ± 17	VNK03	190 ± 16			
VTV01	250 ± 21	VNK04	150 ± 12			
VT V02	100 ± 80	VNK05	160 ± 13			
AMS01	130 ± 11	VNK06	220 ± 18			
AMS02	120 ±10	VNK07	130 ± 10			

* Minimal Detectable Concentration

For the 18 water samples collected, a lognormal ²²²Rn

concentrations distribution is observed. ²²²Rn concentrations range from 10 Bq.L⁻¹ to 703.60 Bq.L⁻¹. The arithmetic mean is 119.40 Bq.L⁻¹, the median value is 55 Bq.L⁻¹ and the geometric mean is 4.10 $Bq.L^{-1}$.

Of the ²²²Rn concentrations acquired, 99 % of results are above 5.9 Bq.L⁻¹ the mean ²²²Rn concentrations value in drinking water fixed by German regulation and 11 Bq.L⁻¹ the limit set by Environmental Protection Agency (EPA) while 70% are above 50 Bq.L⁻¹, 60 % are above 100 Bq.L⁻¹ and 13.33 % are above 200 Bq.L⁻¹.

13th International Congress of the

International Radiation Protection Association

Conclusion

Considerable concentrations of ²²²Rn were found in water samples from Vinaninkarena – Antsirabe, Madagascar. The maximum ²²²Rn concentration measured is 703.60 Bq.L⁻¹, which corresponds to an annual effective dose of 163.14 μ Sv. This was evaluated starting from the water consumption of 2 liters per day. Radiation dose estimated for the same radon concentrations through Bayesian analysis (Crawford-Brown 1987) are relatively higher because using the geometric mean ²²²Rn concentration of 4.10 Bq L⁻¹, it is estimated that an additional tracheobronchial lung dose of 6.10⁻² mSv.y⁻¹ is delivered from the same water to home pathway.

Extraction of the 222 Rn from the water in the organic scintillator leads to the determination of the 226 Ra in water. The method is not fast but simple and sensitive. It requires at least two weeks of storage before counting so that equilibrium between the 226 Ra and the 222 Rn is established.

13-18 May 2012 Glasgow Scotland

Madagascar-INSTN © 2012